Tuesday, February 8, 2011

Why Big Solar is NOT Better Solar

As solar energy becomes a more attractive and profitable investment, both small and large-scale projects are being developed.

Big solar is often seen as more attractive because of cost advantages due to scale; however, some of big solar’s characteristics can cancel out those benefits, making large-scale solar projects less attractive than they initially may seem.

Let’s define “big solar” as a photovoltaic (PV) system or a concentrated solar power (CSP) system that feeds energy into grid. "Small solar” is a system that provides energy to meet the load of a given facility (most commercial facilities require less than 1 MW of power).

There are a number of reasons why larger systems can lose their attractiveness, depending on the circumstances.

First, big solar can be an inefficient use of land. Instead of using the millions of acres of rooftop space and small vacant lots across the country, big solar is often built in deserts or remote areas, potentially creating environmental issues or conflicting with agricultural land.

Second, big solar can require more transmission. Since large solar projects are far away from where electricity is used, long and costly transmission lines may need to be constructed to connect them with the grid. It costs approximately $1.5 million per mile for new transmission lines, a substantial price tag that removes a lot of the economic advantages associated with large scale projects. Big solar projects will still require the U.S. to engage in costly infrastructure upgrades over the next few decades; whereas small solar projects reduce the need for costly infrastructure upgrades.

Third, big solar does not always alleviate grid-congestion. Even if new transmission lines can be financed, the electricity will only add to an already congested transmission and distribution system. Whereas, if small scale solar power was added near the power demand (such as the rooftop of a house or building), then it would not add at all to the congestion of the electrical system (one of the main causes of the 2003 blackout in the Northeast).

Fourth, transmission of solar electricity from a centralized power plant wastes electricity. According to the EIA, line losses accounted for 6.5% of total electricity generation in 2007. Small solar, typically constructed on the roof or within a ¼ mile of the building it powers, has virtually no energy loss due to transmission.

Fifth, big solar maintains the security disadvantages of large centralized power plants. In other words, large scale solar is just as susceptible as other power plants to national security threats from hackers or terrorist groups. Now that solar technology is becoming more affordable on a small, residential and commercial scale, there is the potential to dramatically increase the prevalence of distributed generation power systems. Achieving this would insulate the U.S. against its current dependence on large-scale power plants and an outdated electrical grid.

When creating and adjusting renewable energy policies, legislators and policy makers should recognize the unique benefits of small solar and distributed generation. It is important to understand that even though big solar may have some scale-related cost advantages, it is not always the best solar.

Source:   Renewable Energy World.com

No comments:

Post a Comment